a2 United States Patent

Jonsson

US009058699B2

US 9,058,699 B2
*Jun. 16, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)
(52)

(58)

SYSTEM AND METHOD FOR IMAGE
COMPOSITION USING NON-DESTRUCTIVE
EDITING MODEL AND FAST GRADIENT

SOLVER

Applicant: Adobe Systems Incorporated, San Jose,
CA (US)

Inventor: Michael D. Jonsson, San Jose, CA (US)

Assignee: Adobe Systems Incorporated, San Jose,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/745,311

Filed: Jan. 18, 2013
Prior Publication Data
US 2014/0035950 A1 Feb. 6, 2014

Related U.S. Application Data

Continuation of application No. 12/364,378, filed on
Feb. 2, 2009, now Pat. No. 8,380,005.

Int. CI.

GO6T 11/60 (2006.01)

U.S. CL

CPC e, GO6T 11/60 (2013.01)
Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,577,179 A 11/1996 Blank
5,579,471 A 11/1996 Barber et al.
5,666,475 A *  9/1997 Salesinetal. ................. 345/428
7,024,054 B2 4/2006 Cahill et al.
7,983,512 B2* 7/2011 Gerhardetal. ............... 382/299
(Continued)
OTHER PUBLICATIONS

“Non-Final Office Action”, U.S. Appl. No. 12/364,378, (May 29,
2012), 10 pages.
(Continued)

Primary Examiner — Jon Chang
(74) Attorney, Agent, or Firm — Wolfe-SBMC

(57) ABSTRACT

Systems and methods for interactive image compositing may
integrate image searching using visual search criteria (e.g.,
color, composition, tonal distribution, or lighting effects),
non-destructive image compositing, and high-performance
rendering using a fast gradient solver to provide an efficient
workflow for users. An image compositing application,
executable by a CPU and/or GPU, may employ a sketch-and-
refine approach, whereby a user draws a rough perimeter
around an object of interest in an image and (following an
initial application of the fast gradient solver to a lower-reso-
Iution version of the image) receives a preview of how it
would fit into a composition. The fast gradient solver may
differentiate between the object and its background by apply-
ing artificial intelligence techniques and/or dependent on
user-supplied hints. In a second stage, the fast gradient solver
may refine the solution for a final rendering of the composite
image by operating on successively higher-resolution ver-
sions of the image.

20 Claims, 20 Drawing Sheets

receive input identifying a selected image
pit;

:

access data representing the identified
image in persistent storage
120

!

display identified image in user-specified
position within Lc&mposite image

!

receive user input to select object in identified image
140

!

extract selected object and merge
with composite image to generate
preview of madified composite image
150

!

| render refined version of modified composite image

!

output data representing refined composite image
170




US 9,058,699 B2
Page 2

(56)

8,380,005
2002/0054115
2005/0190189
2005/0254722
2007/0013813
2007/0165966
2008/0143744
2008/0175508
2008/0198175
2008/0301546
2010/0086227

References Cited

U.S. PATENT DOCUMENTS

Bl
Al*
Al
Al
Al
Al
Al
Al
Al
Al
Al

2/2013
5/2002
9/2005
11/2005
1/2007
7/2007
6/2008
7/2008
8/2008
12/2008
4/2010

Jonsson

Mack etal. ......cccouenene 345/765
Chefd’ hotel et al.
Fattal et al.

Sun et al.

Weiss et al.
Agarwala

Bando et al.

Sun et al.

Moore et al.

Sun et al.

OTHER PUBLICATIONS

“Notice of Allowance”, U.S. Appl. No. 12/364,378, (Oct. 15, 2012),
6 pages.

Kazhdan, et al., “Streaming Multigrid for Gradient-Domain Opera-
tions on Large Images”, ACM SIGGRAPH 2008 papers (SIG-
GRAPH °’08). ACM, New York, NY, USA Atticle 21, 10 pages,
(2008), 10 pages.

McCann, et al., “Real-Time Gradient-Domain Painting”, ACM SIG-
GRAPH 2008 papers (SIGGRAPH *08). ACM, New York, NY, USA,
Article 93, 7 pages., (2008), 7 pages.

* cited by examiner



U.S. Patent Jun. 16, 2015 Sheet 1 of 20 US 9,058,699 B2

receive input identifying a selected image
110

'

access data representing the identified
image in persistent storage
120

'

display identified image in user-specified
position within composite image
130

'

receive user input to select object in identified image
140

'

extract selected object and merge
with composite image to generate
preview of modified compaosite image
150

'

render refined version of modified composite image
160

!

output data representing refined composite image
170

FIG. 1



U.S. Patent Jun. 16, 2015 Sheet 2 of 20 US 9,058,699 B2

receive input identifying a reference image
200

|

receive input specifying keyword
search criteria and/or visual search
criteria relative to the reference image
210

'

receive input specifying search domain
220

'

search specified domain for images
matching search criteria; return results
230

user refines
search criteria?
240

yes

receive input identifying selected
image(s) of search results
250

'

store selected image(s) in active
and/or persistent storage
260

FIG. 2



U.S. Patent Jun. 16, 2015 Sheet 3 of 20 US 9,058,699 B2

300
/_

[ Snfutiadindaddid |
Search

]
FIG. 3A

power

Tweak Play

' Seek b




U.S. Patent Jun. 16, 2015 Sheet 4 of 20 US 9,058,699 B2

300
/_

ﬂ Search
FIG. 3B

power

Seek  Tweak Play




US 9,058,699 B2

Sheet 5 of 20

Jun. 16, 2015

U.S. Patent

o€ Ol4

JHOW ANI4

NY3LLYd LHOM H0T00)

HEN

yoJess

[a] semod

Aejld yeamj

AL

00¢ I\




U.S. Patent Jun. 16, 2015 Sheet 6 of 20 US 9,058,699 B2

0
S
& Q
= S
L
g
S
5
Q.
g
K
5]
% k\u Q/ Z
< P
<\
{
/]




US 9,058,699 B2

Sheet 7 of 20

Jun. 16, 2015

U.S. Patent

3¢ Ol

yosess [[a]

Jamod

Aeld Yeamy

AN

00€ I\




U.S. Patent Jun. 16, 2015

Sheet 8 of 20

US 9,058,699 B2

access data representing an image

410

'

generate image pyramid using bilinear interpolation
420

'

derive gradient field by convolving
image with discrete Laplacian kernel

430

:

for given level of the image pyramid, find solution
vector; render and display preview image

440

I

propagate solution vector to
next higher level of pyramid
450

go to next higher level
of image pyramid
465

[

no

residual
error below

threshold?
460

render refined image according to solution

470

FIG. 4



U.S. Patent

Jun. 16, 2015 Sheet 9 of 20

US 9,058,699 B2

open image compositing application
and navigate to search tab
510

|

execute search using keywords
and/or visual criteria
520

'

preview search results and
select desired image(s)
530

are images
rights managed?
540

yes

store them into image collection

545

license through one-stop-shop

555

—T—

550

move to canvas, start compaositing scene

yes add

objects?
260

finalize composite image
570

'

publish composite image
280

FIG. 5



U.S. Patent Jun. 16, 2015 Sheet 10 of 20 US 9,058,699 B2

X
L
w
gl -l &
:%%E
off 2 =l =l =l <l 5
S <l S| Sl St =1 S
| 1 Ol <<l aall =l Ol aall ©

600
/_

FIG. 6A




U.S. Patent Jun. 16, 2015 Sheet 11 of 20 US 9,058,699 B2

w

3l =l &

1 S SRS
off o =l = =)<l s
o Sl gl €l 5| =L
Sl <l = S SIEE S
[ ] Ol <<l aall = Ol aall O

600
/_

FIG. 6B




U.S. Patent Jun. 16, 2015 Sheet 12 of 20 US 9,058,699 B2

w
3l =l &
1 S SRS
off o =l = =)<l s
[ =l 210 sl. =
Sl <l = S SIEE S
[ ] Ol <<l aall = Ol aall O

600
/_

FIG. 6C




U.S. Patent Jun. 16, 2015 Sheet 13 of 20 US 9,058,699 B2

w

3l =l &

1 S SRS
off o =l = =)<l s
o Sl gl €l 5| =L
Sl <l = S SIEE S
[ ] Ol <<l aall = Ol aall O

600
/_

FIG. 6D




U.S. Patent Jun. 16, 2015 Sheet 14 of 20 US 9,058,699 B2

w
3l =l &
1 S SRS
off o =l = =)<l s
[ =l 210 sl. =
Sl <l = S SIEE S
[ ] Ol <<l aall = Ol aall O

600
/_

FIG. 6E




U.S. Patent Jun. 16, 2015 Sheet 15 of 20 US 9,058,699 B2

@ A
IR | S
G)Q)%E_g“&g
HEEREEEE
| | ol <l &l =l Sl gl &
(o)
()
© =
(AN
\ A\
N
L
©
Q)
—
L
=
(N
X
A




U.S. Patent Jun. 16, 2015 Sheet 16 of 20 US 9,058,699 B2

w
3l =l &
1 S SRS
off o =l = =)<l s
[ =l 210 sl. =
Sl <l = S SIEE S
[ ] Ol <<l aall = Ol aall O

600
/_

FIG. 6G

"8\




U.S. Patent Jun. 16, 2015 Sheet 17 of 20 US 9,058,699 B2

Contrast
Brightness

Color

Scale
Angle
Blurrin
Tolerance

600
/_

FIG. 6H




U.S. Patent Jun. 16, 2015 Sheet 18 of 20 US 9,058,699 B2

add light | @)

w

3l =l &

1 S SRS
off o =l = =)<l s
o Sl gl €l 5| =L
Sl <l = S SIEE S
[ ] Ol <<l aall = Ol aall O

600
/_

FIG. 61




U.S. Patent Jun. 16, 2015 Sheet 19 of 20 US 9,058,699 B2
N N
e L e
local external
persistent database
Sforage storage
740 750
image(s) image(s)
745 735
\_L____/ \T"/
| ___
N
I
image compositing application 700 I
Yy
*+--————— - - — — — —— — — = P image search
module
710
object
extraction
1 module
£30 \
GUI had
shadow )
700 generation composite y
< ] > image
module 760
740 —
active
/ images
220
other
editing
- tools
750

FIG. 7

A

170

output data representing
composite image

storage
medium
780




U.S. Patent Jun. 16, 2015

Sheet 20 of 20 US 9,058,699 B2

computer system 800
program instructions 815
m%/?’vg y image compositing data
E— application Structure(s)
820 825
interconnect 860
graphics CPU network
processor(s) 830 interface
840 — 850
input/output
devices
870

FIG. 8




US 9,058,699 B2

1
SYSTEM AND METHOD FOR IMAGE
COMPOSITION USING NON-DESTRUCTIVE
EDITING MODEL AND FAST GRADIENT
SOLVER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority as a continuation to U.S.
patent application Ser. No. 12/364,378, filed Feb. 2, 2009, and
titled “System and Method for Image Composition using
Non-destructive Editing Model and Fast Gradient Solver,” the
entire disclosure of which is hereby incorporated by refer-
ence.

BACKGROUND
Description of the Related Art

Graphic applications include an ever-increasing number of
image editing features, such as various filtering options,
image feature relocation operations, resizing operations (e.g.,
for cropping, expanding, or reducing an image). With the
recent explosion in the number of digital images available to
graphic artists and others involved in image creation and/or
publication (e.g., due to the increasing use of digital photog-
raphy and both public and private websites through which
users can share images with others), these users may also
want to compose new images by combining images, or by
adding particular elements of one image to another image.
Typically, an art director must first identify candidate images
from various sources, and then pass information about the
candidate images to an art buyer, who will do the purchase.
After the purchase, the art buyer passes the images back to the
art director, who creates a composite image and passes it on to
aproduction department for final production (i.e. preparing it
for printing or publication on the Web).

In addition to these difficulties in acquiring images, com-
bining the images involves additional challenges. For
example, image compositing operations, such as extracting
image elements from one or more source images and insert-
ing them into a target image, or removing elements from a
target image and replacing them by other elements, typically
involve one or more elaborate and time consuming computa-
tional tasks.

Some previous techniques on image matting and image
composition work at a pixel-level accuracy, and have been
shown to perform well in extracting foreground layers in
images and placing them on a new background. However,
these techniques are computationally complex and consume
large amounts of both time and resources. In addition, they
typically require the user to provide very accurate inputs to
drive construction of a new output image.

SUMMARY

Systems and methods for performing interactive image
compositing may allow users to insert and/or modify images,
or portions thereof, to compose new images in real time. As
described herein, an image compositing application may in
some embodiments provide a framework for the integration
of interactive image searching capability using visual search
criteria, non-destructive image compositing, and a high-per-
formance rendering model employing a fast gradient solver.
Such an application may streamline image discovery, image
acquisition, and compositing operations into an efficient
workflow for users.

15

20

25

30

35

40

45

55

2

Through an image search module of the image composit-
ing application, a user may perform image searches using
visual search criteria, e.g., a color, a pattern, a color distribu-
tion, an image composition, a distribution of image elements,
atonal distribution, or a lighting effect. For example, the user
may search the Web and/or his local drive for images, preview
candidate photos with color patterns or content similar to that
of'areference image, and add selected ones of those images to
his collection from multiple sources, in various embodi-
ments. Using an interactive editing model, the user may select
images from his collection on which to perform advanced
editing such as scene completion, which may involve insert-
ing new objects while maintaining them as separately editable
elements of a composite image, making adjustments to
inserted objects, and adding reflections or shadows to com-
plete the composite image. The editing model may be non-
destructive, making modifications to a working copy of an
image or an object thereof for inclusion in a composite image,
without modifying other images or objects included in the
composite image, or data representing the images in persis-
tent storage.

The image composition application described herein may
use a sketch-and-refine approach to image composition. For
example, in an initial step, after an image has been identified,
a user may draw a rough perimeter around an object of inter-
est in the image (i.e. an image element) and may receive
instantaneous feedback about how the object, once extracted
from the image, would fit into the composition. In various
embodiments, the object may be merged into a destination
image to generate a composite image by blending the object
and the destination image in the gradient domain using the
fast gradient solver of the application. In order to blend the
object and the destination image, the object of interest must
be distinguished from its background contents so that it can be
extracted from its background. While this is easy for the
human eye to distinguish, it may be much harder to do com-
putationally.

In some embodiments, in order to differentiate between the
object of interest and its background contents, the fast gradi-
ent solver may obtain an initial unaided result by drawing
inferences from color and/or tonal information found along
the rough perimeter. In other words, the fast gradient solver
may apply artificial intelligence in distinguishing the object
of interest from its background. In some embodiments, the
user may improve the solution by augmenting (e.g., annotat-
ing) the image with “jots” to define exclusion and/or inclusion
zones, as described herein.

In order to obtain interactive performance, the fast gradient
solver may employ a two-stage rendering model. In the first
stage, an initial screen-size resolution image may be gener-
ated (e.g. for an immediate preview). The resolution of this
initial image may be lower than that of the image from which
the object of interest was extracted. In the second stage, a final
rendering may be performed that further refines the compos-
ite image. This may involve applying the fast gradient solver
to higher-resolution version of the image than one used to
generate the immediate preview. For example, in one embodi-
ment, the application may be configured to generate an image
pyramid of two or more levels, in which each level of the
image pyramid comprises data representing a respective ver-
sion of the image having a different image resolution. In such
embodiments, the fast gradient solver may operate on data of
the lowest-resolution level of the image pyramid to generate
the preview image, and may operate on data of successively
higher resolution levels of the image pyramid during the
second stage. In some embodiments, the second stage may be
performed during idle time of the application (i.e. while no



US 9,058,699 B2

3

user interaction is taking place), and the screen-sized preview
may be gradually refined to a level suitable for the final
rendering.

In some embodiments, the application may provide editing
tools for modifying one or more objects inserted in a com-
posite image, including modifying the color, contrast, expo-
sure, brightness, sharpness, color balance, size, aspect ratio,
orientation, position, or other parameters of an object, or may
duplicate or generate a mirror image of an object in the
composite image. In such embodiments, the image compos-
iting application may re-apply the two-stage rendering model
to quickly merge the modified object into the composite
image as each modification is made. In such embodiments,
the image compositing application may be configured to gen-
erate and display a new preview of the composite image in
which the modified object appears to be inserted in the des-
tination image, rather than the unmodified object. In other
embodiments, the application may allow the user to export a
composite image to another graphics application to apply
finishing touches or otherwise continue to process the com-
posite image.

The methods described herein may be implemented as
program instructions, (e.g., stored on computer-readable stor-
age media) executable by a CPU and/or GPU, in various
embodiments. For example, they may be implemented as
program instructions that, when executed, implement an
image editing application in response to user input. This
image editing application may perform image editing opera-
tions using inverse patch transforms, thus generating recon-
structed output images, and may perform correction of visual
artifacts in the output image using patch jittering, as described
herein. The selection of particular image editing operations or
correction operations to be applied to an image (and/or
parameters thereof) may be specified by the user (e.g.,
through a graphical user interface).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a method for image compositing in a
graphics application, according to one embodiment.

FIG. 2 illustrates a method for performing an image search,
according to one embodiment.

FIGS. 3A-3E illustrate the use of an image search module,
according to one embodiment.

FIG. 4 illustrates a two-stage method for fast integration of
a gradient field, according to one embodiment.

FIG. 5 illustrates a method for using an image compositing
application to compose an image, according to one embodi-
ment.

FIGS. 6A-6] illustrate a method for implementing scene
completion in a graphics application, according to one
embodiment.

FIG. 7 illustrates various elements of an image composit-
ing application, according to one embodiment.

FIG. 8 illustrates a computer system configured to imple-
ment an image compositing application, according to one
embodiment.

While several embodiments and illustrative drawings are
included herein, those skilled in the art will recognize that
embodiments are not limited to the embodiments or drawings
described. It should be understood, that the drawings and
detailed description thereto are not intended to limit embodi-
ments to the particular forms disclosed, but on the contrary,
the intention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope as defined by
the appended claims. Any headings used herein are for orga-
nizational purposes only and are not meant to limit the scope

10

20

25

30

35

40

45

50

55

60

65

4

of the description or the claims. As used herein, the word
“may” is used in a permissive sense (i.e., meaning having the
potential to), rather than the mandatory sense (i.e., meaning
must). Similarly, the words “include”, “including”, and
“includes” mean including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of
claimed subject matter. However, it will be understood by
those skilled in the art that claimed subject matter may be
practiced without these specific details. In other instances,
methods, apparatuses or systems that would be known by one
of ordinary skill have not been described in detail so as not to
obscure claimed subject matter.

Some portions of the detailed description which follows
are presented in terms of algorithms or symbolic representa-
tions of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels. Unless specifically
stated otherwise, as apparent from the following discussion, it
is appreciated that throughout this specification discussions
utilizing terms such as “processing,” “computing,” “calculat-
ing,” “determining” or the like refer to actions or processes of
a specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose elec-
tronic computing device.

As noted above, graphic applications include an ever-in-
creasing number of image editing features, and users have
access to an ever-increasing number of images from which to
choose when composing new images. In some embodiments,
an image compositing application may provide a framework
that integrates an easy interactive user interface for discovery
and selection of images, and a high performance, low-com-
plexity computational model that employs a fast gradient
solver and a non-destructive editing model (i.e. sketch-and-
refine selection model) made possible by the real-time solver.
Such an application may transform the way people interact



US 9,058,699 B2

5

with their own photographs by allowing them to leverage the
information available to them in the billions of images over
the Internet.

In some embodiments, an image compositing application,
such as that described herein, may provide a user experience
that turns static images into dynamic, shared content. The
application may combine advanced navigation, editing and
viewing techniques with collaboration to bring image collec-
tions to life for creative graphics professionals. Through an
image search module of the application, the user may search
the Web and/or his local drive for images, preview candidate
photos with similar color patterns or content to a reference
image, and add images to his collection from multiple
sources, in various embodiments. Using an interactive editing
model, the user may select images from his collection on
which to perform advanced editing such as scene completion,
which may involve composite images moving, rotating and
mirroring existing objects, inserting new objects as separately
editable elements of a composite image, making adjustments
to inserted objects, and adding reflections or shadows to com-
plete the composite image. In some embodiments, the appli-
cation may allow the user to export a composite image to
another graphics application to apply finishing touches or
otherwise continue to process the composite image.

As previously noted, in order to reduce the complexities of
image compositing tasks (e.g., extracting elements from
source images and inserting them into a target image, or
removing elements from a target image and replacing them
with other elements), an interactive editing model may
employ a sketch-and-refine approach to the composition of
images from multiple sources. In other words, the model may
not require the user to precisely identify image elements in
order for them to be extracted from one image and inserted
into another. Instead, a rough estimate of the boundaries of an
object of interest may be used to obtain an adequate initial
visual result, and the model may use artificial intelligence
methods to automatically refine the selection. The model may
employ non-destructive editing and rendering in which all
edits may be translated into parameters and attributes that
describe the composition and that are kept persistent and
independent from the rendered composition itself. This
model may thus enable re-rendering reflecting changes made
to parameters and attributes. In such embodiments, no image
data making up the individual objects comprising a compos-
ite image are changed in a persistent fashion. Therefore,
renderings may be repurposed using the original image ele-
ments, using a different set of parameters.

FIG. 1 illustrates one such method for creating a composite
image, according to one embodiment. In this example, an
image compositing application (e.g., a stand-alone applica-
tion or amodule of another graphics application configured to
perform the operations described herein) may be configured
to receive user input identifying a selected image to be added
to a composite image, as in 110. For example, in various
embodiments, such an application may be configured to
receive user input identifying a given image in a collection of
images available to the user through a graphical user inter-
face, as described in more detail below. The application may
be configured to access data representing the identified image
from persistent storage, such as an individual disk, disk
arrays, optical device (e.g., CD-ROMs, CD-RW drives,
DVD-ROMs, DVD-RW drives), flash memory device, etc., as
in 120.

As illustrated in FIG. 1, the application may be configured
to display the identified image superimposed on top of
another image as part of a work in progress (i.e., as an overlay
of'a composite image under construction) in a position speci-

20

25

35

40

45

55

6

fied by the user, as in 130. For example, in some embodi-
ments, after identifying an image to be added to the composite
image, or as part of the selection of the identified image, the
user may “drag and drop” the identified image into a frame of
the user interface serving as a work area for the composition
of'the composite image.

In some embodiments, the application may be configured
to allow the user to select an image element (i.e. an object
depicted in the identified image) that is to be included in the
composite image, rather than the entire image, as in 140. For
example, in one embodiment, the user may select an image
element by drawing a coarse perimeter around the image
element of interest, e.g., using a frechand drawing tool or
polygon drawing tool of the graphical user interface. In some
embodiments, the user may further improve the selection of
the object of interest by augmenting the selection with “jots”
(i.e. image annotations) to define exclusion/inclusion zones.
In other words, in addition to allowing the user to roughly
sketch the perimeter of the object using a drawing tool, the
user interface may also be configured to provide a tool to
allow the user to provide hints to aid in extracting the object
by marking a portion of the identified image as being part of
the object of interest or as being part of the background of the
image.

In response to user selection of an object, the application
may be configured to extract the selected object from the
identified image, and may provide instantaneous feedback of
how the extracted image element fits into the composition, as
in 150. As previously noted, in order to obtain interactive
performance, the image composition application may in
some embodiments employ a two-stage rendering model that
includes one stage for rendering an initial result with screen-
size resolution and one for final rendering. In the example
illustrated in FIG. 1, the application may be configured to
merge the extracted object with the composite image to gen-
erate a preview of the composite image, as modified by the
addition of the selected object. In some embodiments,
extracting and merging the selected object into the destination
image may be performed by blending in the gradient domain
using a fast gradient solver, as described in more detail below.
In order to differentiate between the selected image element
and the background of the identified image, an initial unaided
result may be obtained by drawing inferences from color and
tonal information found along the perimeter of the selection.

In the second rendering stage, shown as 160, the applica-
tion may be configured to render a refined version of the
modified composite image. For example, in some embodi-
ments, the screen-sized preview may be gradually refined to a
level that equals the final rendering during idle-time (i.e.
while no user interaction is taking place). As illustrated in
FIG. 1, once the refined composite image has been rendered,
the image compositing application may be configured to out-
put data representing the composite image, as in 170. For
example, in addition to the data being used to display the
composite image to the user, the data may be stored by the
application in memory local to the image compositing appli-
cation for further processing and/or may be written to persis-
tent storage for subsequent access by the image compositing
application or another application, in various embodiments.

In some embodiments, the user may be able to enhance the
tonal and color as well as geometric appearance of the
inserted image element before it is inserted in the composite
image, while it is still in the “preview” phase (i.e. following
the initial rendering, but before final rendering), and/or fol-
lowing the final rendering phase. While the composite image
is being constructed and/or modified, the image compositing
application may be configured to maintaining each of the



US 9,058,699 B2

7

selected images and/or image elements of the composition,
including the destination image, as separately editable ele-
ments of the composite image. In other words, the application
may provide graphics editing tools for iteratively modifying a
working copy of the data representation of the object without
modifying the data of the underlying image of the composi-
tion and without moditying the data representing the identi-
fied image from which the object was extracted. In such
embodiments, any of a variety of operations may be per-
formed on the object in response to user input, such as modi-
fying the color, contrast, exposure, brightness, sharpness,
color balance, size, aspectratio, orientation, position, or other
parameters of the image element, or may duplicate or gener-
ate a mirror image of the image element in the composite
image, and the image compositing application may re-apply
the two-stage rendering model to merge the modified object
into the composite image as each modification is made.

Although not shown in FIG. 1, it should be understood that
the image compositing application may be configured to sup-
port the addition of multiple image elements from one or
more identified source images, by performing the operations
illustrated in FIG. 1 for each additional image and/or image
element thereof. In some embodiments, the image composit-
ing application may include an integrated image search mod-
ule, through which the application may identify candidate
images and image elements for inclusion in a composite
image. Such an image search module may allow a user to
search his own collection of images (e.g., an image database
on his local disk drive) or to search for images from external
images sources (e.g., an image collection or database in
remote persistent storage to which he has access, commercial
image databases, individual shared images or collections of
shared images on public websites, etc.) The image search
module may allow the user to search for images using visual
search criteria instead of, or in addition, to file type, file name,
and/or keyword criteria. For example, in some embodiments,
the application may allow the user to search for images
including similar colors, color patterns, tonal patterns or dis-
tributions, lighting effects, content, and/or content distribu-
tion as an image identified by the user as a reference image for
a given search. The user may then select one or more images
from the search results to include in the collection of images
available to him during construction and/or modification of a
composite image by the image compositing application. The
user may then perform advanced editing on these images, or
on selected image elements thereof, as part of the construc-
tion or modification of the composite image.

One method for performing an image search using visual
search criteria is illustrated in FIG. 2. In this example, an
image search module (e.g., an image search module of an
image compositing application) may be configured to receive
input identifying a reference image, as in 200. For example,
the user may use a selection tool (e.g., a cursor controlled by
a mouse, track ball, touch pad, or similar) to identify a refer-
ence image from among active images in a frame of the user
interface of the image compositing application. The image
search module may be configured to receive input specifying
visual search criteria and/or keyword search criteria relative
to the reference image, as in 210. For example, the search
module may be configured to prompt the user to enter a
keyword to be used in the image search or to select an image
element to be used as a reference in the image search. The
search module may be configured to prompt the user to
specify one or more types of visual search criteria to use in the
image search (e.g., whether to attempt to match the color,
color distribution, content, and/or content distribution of the
reference image or of the selected image element thereof).

10

15

20

25

30

35

40

45

50

55

60

65

8

In the example illustrated in FIG. 2., the image search
module may be configured to receive input specifying a
search domain for the image search, as in 220. For example,
in various embodiments, the search module may be config-
ured to prompt the user to choose to whether direct the image
search to his own image collection, to any or all public web-
sites, and/or to a collection of images available from a com-
mercial image source. The search module may be configured
to perform the image search in the specified search domain
and to return any results, e.g., one or image matching the
search criteria, as in 230. For example, various data formats in
which images are stored include metadata portions that may
be annotated with keyword information, and the image search
module may be configured to search for that information in
the metadata. In another example, some commercial and pub-
lic image databases are beginning to automatically glean
visual information from images when they are obtained (e.g.,
information about the colors, contrast, color distribution, or
color balance exhibited in the images), and to store that infor-
mation in descriptors associated with the images. In some
embodiments, the image search module may be configured to
search for that information when accessing those image data-
bases.

In some embodiments, such as that illustrated in F1G. 2, the
image search module may be configured to allow the user to
refine the search criteria in response to receiving the initial
search results, as in 240. In such embodiments, if the user
chooses to refine the search criteria, the operations illustrated
in 210-230 of FIG. 2 may be repeated until the useris satisfied
with one or more candidate images returned by the image
search module. The search module may be configured to
allow the user to identify the one or more candidate images
from among the search results, as in 250, and to store the
candidate images in memory local to the image search mod-
ule and/or the image compositing application, and/or to store
the candidate images in persistent storage for later access
through the image search module, the image compositing
application, or another application, as in 260.

The image search module of the image compositing appli-
cation may be further described by way of example. FIGS.
3A-3E illustrate the selection of candidate images for use in
constructing and/or modifying a composite image using one
such search module, according to one embodiment. In this
example, a user interface window 300 of an image compos-
iting application displays various frames that may be visible
to a user during an image search operation. In FIGS. 3A-3E,
active images (i.e. those currently available for selection and
merging into a composite image) are displayed in a frame on
the left side of window 300, various menu items are displayed
in a frame along the top of window 300, and search results are
displayed in a large central frame in window 300.

FIG. 3 A illustrates the selection of a reference image for an
image search using visual criteria, as described herein. In this
example, four images are displayed in the active image frame,
and the user has selected an image of a dog, as evidenced by
the thick line around the image of the dog. In various embodi-
ments, selection of the reference image may be performed
using any of a variety of'user interface mechanisms, such as a
mouse, track ball, or touch pad to position a cursor or other
selection tool over the reference image, for example. At this
point, prior to performing the search, the search results frame
is empty. In this example, the user has selected menu items
“seek” and “search” from the menu frame to initiate a search
using visual criteria based on the image of the dog as a
reference image. In some embodiments, the image search
module may be configured to prompt the user to specify the
type of visual search criteria to apply to the search, e.g., color,



US 9,058,699 B2

9

color distribution, content, content distribution, etc. (not
shown). In other embodiments, the image search module may
be configured to attempt to find images similar to a selected
image using all such visual search criteria, or using a pre-
defined or default set of visual search cues that are applicable
to the reference image. As previously noted, in some embodi-
ments, the image search module may be configured to prompt
the user to specify one or more search domains over which to
perform the image search (not shown). In other embodiments,
the image search module may be configured to search only
local persistent storage, or may be configured to search over
a pre-defined or default set of image sources (e.g., particular
commercial image databases or public domain image data-
bases).

FIG. 3B illustrates the presentation of initial search results
using the image of the dog as a reference. In this example, the
initial search results include five images of individual dogs.
These images may roughly match the content (dog) and con-
tent distribution (one dog centered in the image) of the refer-
ence image, and may or may not also roughly match the color
or color distribution of the reference image. The initial search
results also include one image of a cat. This image may also
roughly match the content (small animal) and content distri-
bution (one small animal centered in the image) of the refer-
ence image, and may or may not also roughly match the color
or color distribution of the reference image. In this example,
the initial search results also include an image of two dogs
(which may be similar in color to the dog in the reference
image), a deer (another animal centered in the image, which
may be similar in color to the dog in the reference image
and/or may be on a similarly colored background as the dog in
the reference image), and an image of tree (which may
include a similar distribution of colors—browns and greens)
as the reference image. If the user is only interested in images
of dogs, the user may further refine the search by adding a
keyword “dog” to the search criteria, or may further refine the
search by selection of a representative image from among the
initial search results, as shown in FIG. 3C.

FIG. 3C illustrates the selection of a second reference
image from among the initial search results as an image that
best represents the visual criteria for which the user was
searching. In this example, the user has selected an image of
a single dog from among the initial search results in the search
results frame. The selection of the second image may be
performed using any of a variety of user interface mecha-
nisms, such as those described above. In this example, in
response to the selection of a second reference image, the
image search module is configured to prompt the user to
refine the search by specify the type of visual criteria to apply
in the search, e.g., color, light, pattern. The user may select
one or more of these and then select “find more” to initiate a
refined image search using the two reference images and the
selected visual search criteria (e.g., “color” and “pattern”,
which are shown in bold to indicate their selection).

FIG. 3D illustrates the search results returned by the image
search module in response to the refinement of the visual
search criteria and the selection of a second reference image.
In this example, the search results include six images of
individual dogs. FIG. 3D also illustrates the selection of one
of'the images included in the search results (indicated by the
thick outline) and the “dragging and dropping” of the selected
image into the active image frame on the left side of window
300. FIG. 3E illustrates window 300 following the image
search exercise described above. In this example, the addition
of the new image causes the reference image in the active
image frame to be removed from the active image frame (i.e.
to be replaced by the newly added image). In other embodi-

10

15

20

25

30

35

40

45

50

55

60

o

5

10

ments, adding an image to the active image frame may not
cause other images to be removed from the active image
frame. In this example, after adding the new image ofa dogto
the active image frame this image (or an image element
thereof, e.g., the dog) may be merged with one or more other
images as part of an image compositing exercise. An example
of one such exercise is describe below in reference to FIGS.
6A-61.

As previously noted, in some embodiments, an image com-
positing application may be configured to perform fast inte-
gration of gradient fields, which may allow advanced com-
position and editing operations to be performed on a
composite image, or elements thereof, interactively in real-
time. In some embodiments, the application may be config-
ured to implement integration of gradient fields through the
application of a method for fast approximation. In such
embodiments, given a gradient field for an image and a set of
constrains, the application may quickly approximate an
intensity domain solution that meets the given set of con-
strains while retaining high visual quality.

FIG. 4 illustrates a method for fast integration of a gradient
field to extract an image element from its background,
according to one embodiment. This method may be imple-
mented as a module of an interactive image compositing
application and/or in hardware (e.g., in a digital camera), in
various embodiments. In this example, the image composit-
ing application may be configured to access data representing
an image A that a user wishes to manipulate in some way
given a set of constrains, as in 410. For example, the applica-
tion may access data representing an image A bounded by a
roughly sketched perimeter around an element selected from
an larger image, as described above. The image A may be
represented as a two dimensional array of samples, in this
example.

Inthe example illustrated in FIG. 4, the application may be
configured to generate an image pyramid of the data, as in
420. For example, from the data representing image A, the
application may be configured to build an image pyramid of
increasingly lower resolution by bilinear interpolation, such
that A, denotes the highest resolution representation of A, Al
denotes the representation having half the resolution of A,
(i.e. therepresentation having one halfthe number of pixels of
A, in the vertical and horizontal directions), and so on, where
each representation A,, denotes the image representing half
the resolution of A, ;.

As illustrated in FIG. 4, the application may be configured
to derive a gradient field for the image, as in 430. For example,
if A, represents the gradient field of A, , then the gradient field
may be derived by convolving the image A, with the follow-
ing discrete Laplacian kernel K:

0.25

025 -1 025

In this example, for each pixel to be integrated:

A0y =AY H A= Ly )+ A, 3 y- DA, (0 Ly)+
A,(x,y+1))*0.25
The kernel may vary in size and terms, in different embodi-
ments. In some embodiments a small kernel may be used to
derive the highest of frequencies.
As illustrated in FIG. 4, at each level of the pyramid starting
with the bottom level (n) the application may be configured to



US 9,058,699 B2

11

find a solution vector (S,,) that meets the given constraints, as
in 440. At this point (or at any point subsequent to this point)
the application may also be configured to render and display
a preview image, based on the approximate solution to that
point. The application may be configured to promote that
solution vector to the next level of the pyramid (n-1) and to
use it as a starting point for a solution at that next level, as in
450. Propagating the solution vector S, to the next level in the
pyramid S, may be done by nearest neighbor interpolation,
in some embodiments.

As illustrated in FIG. 4, the application may in some
embodiments be configured to continue refining the image
(i.e. by moving to subsequent levels of the pyramid). In such
embodiments, the application may be configured to find the
solution vector by repeatedly evaluating and adjusting the
solution vector until a specified maximum residual error is
below a certain threshold, as shown in 460 and the feedback
through 465 to 440 in FIG. 4. Once the residual error is below
the threshold, shown as the positive exit from 460, the appli-
cation may be configured to render the refined image accord-
ing to the final solution vector, as in 470.

In the example described above, the gradient solver may
include code similar in function to the following pseudo code:

While MaxError > some threshold
For each unknown in S,,(x,y)
S,/53) = (S,0-Ly) + S,(xy-1) + S,(x+1y) + S, (xy+1)) *
025 -Axy)
Error =1 A,'(x,y) - ((S,(x-1,y) + S,,(x,y-1) +
S, (x+1y) + S,(x,y+1)) * 0.25 - S,(x,y)) |
If ( Error > MaxError )
MaxError = Error
Done
Done

Note that in some embodiments, initially (e.g., for the
lowest resolution), the convergence may be fairly slow. How-
ever, as the solution propagates up the pyramid, making the
starting point or initial guess more and more accurate, fewer
and fewer iterations are necessary to reach a satisfying solu-
tion. Empirically, it may be shown that in order to provide an
adequate visual result, it may only be necessary to run one or
two iterations at the highest resolution levels.

In one embodiment, the method described above may be
applied to the identification and extraction of an object of
interest from an image. For example, an image comprising
512x512 pixels may be divided into a pyramid of six levels
(512x512, 256%x256, 128x128, 64x64, 32x32 and 16x16),
and the method described above may be used with a con-
straint to match a certain intensity level along the edge of the
object of interest (wWhich may be a common case for seamless
blending, cloning etc.).

A method for implementing and applying the fast gradient
solver may be further described by way of example. In one
example, the fast gradient solver described herein may be
used to extract an object from the background of an image so
that it may be inserted into another image. In this example, the
fast gradient solver may be used to create a mask distinguish-
ing pixels of the object of interest as foreground pixels and the
remaining pixels of the image from which the object is to be
extracted as background pixels. In this example, the fast gra-
dient solver may be applied to a portion of an image selected
by the user using a perimeter tool to roughly outline the object
of interest in the image. The fast gradient solver may be
applied to the problem of identifying the “edge” of the object,
i.e. the points at which (when scanning the image from the
rough perimeter toward the center) the pixels change from

10

15

20

25

30

35

40

45

50

55

60

65

12

background pixels to foreground pixels. For example, if the
image includes a square containing red tones (the object of
interest) on a background of blue tones, the fast gradient
solver may assign to each pixel within the area bounded by the
rough perimeter a value indicating the probability that the
pixel is a foreground pixel. In some embodiments, the value
may be a binary indicator, for which one value indicates that
the pixel is probably a foreground pixel and the other value
indicates that the pixel is probably a background pixel.

In this example, the method includes building an image
pyramid representing the pixels of the portion of the image
bounded by the rough perimeter, and beginning processing on
the lowest level of resolution in the image pyramid. For
example, a six-level pyramid may be generated, as described
above, and processing may begin by determining the prob-
ability that each pixel of the lowest-resolution image is a
foreground pixel. In some embodiments, the fast gradient
solver may apply various artificial intelligence techniques to
determining whether each pixel at the current resolution is
likely to be a foreground pixel. For example, the probability
that a pixel on the rough perimeter is a foreground pixel may
be assumed to be zero, while the probability that a pixel in the
center of the area bounded by the rough perimeter is a fore-
ground pixel may initially be assumed to be 100%. For each
pixel in the area identified by the rough perimeter, the fast
gradient solver may assign pixels as foreground or back-
ground pixels based on their proximity to the rough perimeter,
as well as on their color or intensity values. In various
embodiments, the fast gradient solver may be configured to
distinguish between pixels of the object of interest and pixels
of'its background dependent on one or more of a distance of
the pixels from pixels along the rough perimeter, color values
of'the pixels, intensity values of the pixels, or gradient values
of the pixels. Differentiating between pixels based on gradi-
ent values may in some embodiments allow the fast gradient
solver to take into account differences in texture content when
distinguishing foreground pixels from background pixels.
The solution at the lowest level of the pyramid may be deter-
mined as described above.

Note that in some embodiments, the fast gradient solver
may be configured to use information provided by the user
using an element of the graphical user interface of the inter-
active image compositing application as hints to the solution.
For example, in one embodiment, the image composition
application of which the fast gradient solver is a module may
be configured to allow the user to mark a portion of the area
bounded by the rough perimeter as being part of the object of
interest or as being part of the background of the image. In
such embodiments, the fast gradient solver may assign the
probability indicator values of pixels in these marked areas
with high confidence, and this may assist the solver in quickly
converging on a solution at one or more levels of the image
pyramid. In other words, in such embodiments, the fast gra-
dient solver may be configured to distinguish between pixels
of the object of interest and pixels of its background depen-
dent on one or more pixels marked as being pixels of the
object of interest or as background pixels, instead of, or in
addition to begin dependent on their distance from pixels
along the rough perimeter, their color values, their intensity
values, and/or gradient values of the pixels.

In this example, after determining a solution for the lowest-
resolution image, or at any point thereafter, an initial or
interim solution may be presented to the user through the GUI
interface of the image compositing application. As described
herein, this may serve as a preview of the results of the current
extraction and merging operation for the composite image
under construction.



US 9,058,699 B2

13

In this example, after determining a solution for the lowest-
resolution image, processing continues at the next level of the
image pyramid by scaling the solution up according to the
resolution at the next level. At the next level, only the pixels
identified as being along the edge of the object of interest by
the lowest-level solution may need to be examined to refine
the identification of the edge in the higher-resolution image.
Therefore, fewer iterations of the fast gradient solver may
need to be executed at each level of the image pyramid as
processing moves up the pyramid. In this example, the solu-
tion is refined as processing moves up the pyramid, and this
may continue until an acceptable solution (e.g., a visually
pleasing result) is obtained. In some embodiments, the num-
ber of levels of the pyramid may be chosen by the user such
that it is likely to produce an acceptable result, based on the
resolution of the images being merged and the target resolu-
tion for the composite image. In other embodiments, the
number of levels in the image pyramid may be programmati-
cally determined based on such criteria, or may be pre-de-
fined in the image compositing application.

Note that if changes are made to the object of interest
and/or if its position changes within the composite image, the
fast gradient solver may be reapplied to the problem of
extracting and merging the object of interest in the composite
image on the fly in response to those changes. In some
embodiments, the fast gradient solver may be applied at the
lowest-resolution level of the image pyramid (in a first stage)
as each change is made in the composite image, and then may
be applied to higher-resolution levels (in a second stage) to
refine the result only when the image compositing application
is idle (i.e. when no user interactions are occurring) for a
relatively long time period. Because of the integration of this
high-performance sketch-and-refine editing model, the user
may be able to interactively “play around” with the composite
image (e.g., inserting, moving, and/or modifying one or more
objects) and to observe the initial results in real time.

Note that while the examples described herein for applica-
tion of the fast gradient solver involve its use in extracting
image elements from one image and inserting them into
another image as part of an image compositing or image
completion exercise, the method may also be applicable in
other operations in an image editing application or other
graphics application, such as for image restoration, cloning,
healing, stitching, tone mapping, noise reduction and image
compression. In addition, due to its performance (in terms of
speed of execution) as well as the low complexity of imple-
mentation, the method may also be suitable for implementa-
tion in hardware (e.g., in a digital camera). However, as
discussed above, the performance of the fast gradient solver
may make it especially well suited for image composition
operations, allowing them to be implemented interactively in
real time.

One method of using the image compositing application to
construct a composite image is illustrated in FIG. 5, accord-
ing to one embodiment. In this example, a user may open (or
invoke) the image compositing application and navigate to
the search tab, as in 510. The user may execute a search for
image(s) using keywords and/or visual search criteria, as
described above. This is shown as 520. The user may preview
the search results and select one or more desired images, as in
530.

In this example, if one or more of the desired images is
rights managed (i.e. if it must be licensed before being use in
a composite image) the user may be prompted to purchase a
license for the image(s) using a one-stop-shop feature of the
image search module. This is shown as the positive exit from
540 and 555. In this example, any images that are not rights

20

25

35

40

45

14

managed may be stored by the user into an image collection
(e.g., a private or shared image collection in persistent stor-
age, or a collection of “active” images in memory local to the
application for the duration of a composition project). Once
the desired images have been obtained, the user may move to
the “canvas” tab of the image compositing application and
start compositing an image (e.g., a scene) using one or more
whole images and/or one or more image elements selected
from images in the user’s image collection(s), as in 550.

If the user desires additional image elements not found in
the user’s current image collection(s), the user may perform
any number of additional searches to locate and obtain those
elements. This is illustrated in FIG. 5 as the feedback from
560 to 520. Once the user has added all of the elements
desired in the composite image, shown as the negative exit
from 560, the user may finalize the composite image, as in
570. For example, once multiple image elements have been
merged into the composite image, the user may wish to adjust
the size, location, or appearance of one or more of the objects
to enhance the composite image. As described above, the
image compositing application may provide various editing
tools and functionality to modify the color, contrast, bright-
ness, size, orientation, aspect ratio, and/or other parameters of
any of the inserted objects, and/or may duplicate or generate
mirror images of them, without affecting the underlying
(background) image of the composite image or any of the
other inserted objects. Similarly, the user may apply various
editing operations to the underlying image ofthe composition
image without affecting any of the inserted objects. Once the
composite image is finalized, the user may publish the com-
posite image, as in 580. For example, the user may be a
graphic artist who produces composite images for marketing
materials or advertising, and may publish the composite
image on a website or may export it for use in printed mate-
rials, in different embodiments.

The use of an integrated image compositing application
may be further described by way of a second example. FIGS.
6A-6] illustrate the use of an integrated image compositing
application to perform scene completion, according to one
embodiment. In this example, a user interface window 600 of
an image compositing application displays various frames
that may be visible to a user during an image compositing
operation. In FIGS. 6 A-61, active images (i.e. those currently
available for selection and merging into a composite image)
are displayed in a frame on the left side of window 600, user
interface elements (e.g., slider bars) usable to invoke various
image editing tools (e.g., to adjust the scale, color, or other
parameters of an image or an object thereof) are displayed in
aframe along the right side of window 600, and the composite
image in progress is displayed in a large central frame in
window 600.

FIG. 6A illustrates an image of a beach scene in the central
frame. In this example, the beach scene image was selected by
the user from among the images in the active image frame to
be the starting point for a composite image. FIG. 6B illus-
trates the selection (as indicated by the thick outline) of an
image of a bird in the sky. This image will be merged with the
beach scene image at the position in which it was placed in the
image by the user. For example, the user may have first
selected the bird image (e.g., using a selection tool) and then
may have placed the bird image using another tool. In other
embodiments, the bird image may be selected and positioned
in a single user operation using a drag-and-drop type editing
mechanism. As illustrated in FIG. 6B, the bird image is dis-
played superimposed on the image ofthe beach scene, and the
background of the bird image does not match the background
of the beach scene.



US 9,058,699 B2

15

FIG. 6C illustrates the selection of an image element, or
object, of interest from within the new image (i.e. the bird). In
this example, the image compositing application may be con-
figured to provide a rough sketching tool or “perimeter tool”
with which the user may roughly outline the perimeter of an
object ofinterest or roughly place a polygon around the object
of interest to give an initial indication of an object to be
extracted from the new image and merged with the back-
ground of the beach scene in the composite image under
construction. FIG. 6C shows that the user has sketched a
rough outline around the bird in the bird image, indicating
that it should be extracted from its own background (a cloud-
filled sky) and merged with the clear, blue sky of the beach
scene background. In some embodiments, the image compos-
iting application may be configured to apply the fast two-
stage gradient solver described above to quickly render a
preview of the result of this extraction (e.g., to quickly display
the results of the first stage) when the user releases the selec-
tion tool (i.e. the rough sketching tool). The results are illus-
trated in FIG. 6D. In FIG. 6D, a preview of a composite
image, generated by the fast gradient solver in a first stage is
displayed in the central frame of window 600. In the preview
image, the bird extracted from the bird image appears as if it
has been inserted into the beach scene image. In this example,
the results may be further refined in a subsequent rendering
stage, as described above. In various embodiments, objects
added to a composite image are separately editable, i.e. the
pixels of an added object do not replace the pixels of the
underlying image with which it was merged. Instead, data
representing each object is stored separately and is operated
on independently, as if the object were an overlay in the
composite image. In this way, changes may be made to the
newly added object without affecting any other images (or
objects thereof) in the composite image or in persistent stor-
age.

After placing a new image in the composite scene and
selecting an object thereof for extraction and merging, the
user may wish to modify the new object for a more pleasing
visual result. For example, the user may wish to scale the new
object to be more realistic in the scene into which it was
dropped, and/or to modify the color, brightness, contrast, etc.
to better match the look of the rest of the composite image. In
some embodiments, the image compositing tool may provide
mechanisms for the user to specify modifications and adjust-
ments to be made on a selected object (e.g., the newly added
bird.) FIG. 6E illustrates the result of the user increasing the
scale of the bird (e.g., using a slider bar in the tool frame of
window 600), following its initial placement and merging. As
described above, any modification of an object may operate
only on the object itself and not on any other images or objects
included in the composite image.

FIGS. 6F and 6G illustrate the addition of another object in
the composite image. In this example, an image of a sailboat
in the water on a sunny day is selected for the composite
image. As in the previous example, the sailboat may be
extracted from the own water and sky background and
merged with the background of the beach scene image in the
composite image in response to the user identifying the sail-
boat as the object of interest in the image (e.g., via a rough
sketching tool). As illustrated in FIG. 6G, the sailboat may
then be placed in the composite image and appropriately
scaled down such that it appears to be the correct scale for a
sailboat far from the shore in the beach scene.

FIGS. 6H and 6l illustrate additional features of the image
compositing application, according to one embodiment. FIG.
6H illustrates the use of visual search criteria in the integrated
application. In this example, the image of the dog that was

10

15

20

25

30

35

40

45

50

55

60

65

16

selected from search results using visual search criteria is
selected for inclusion in the composite image. Again, the dog
may be roughly outlined to identify it as the object of interest,
and may be extracted from its own background and merged
with the sand background of the beach scene in the composite
image. FIG. 6l illustrates the integration of a shadow gener-
ating module of the image compositing application, accord-
ing to one embodiment. In this example, an “add light” tool is
selected from among the editing tools in the tool frame of
window 600. The application may provide this tool to allow
the user to specify a point and an angel at which a light source
is assumed to be illuminating an object. In this example, the
“add light” tool has been placed toward the rear of the dog
object, indicating a point at which the light source meets the
object, and the arrow indicates the direction of the light from
the light source. In this example, the shadow generating mod-
ule of the image compositing application computes the effect
of the light source and the blockage of the light due to the
object, and renders the object along with an appropriate
shadow in the composite image. With the addition of the bird
in the sky, the sailboat in the water, and the dog on the beach,
and following any modifications to any of these objects, the
scene may be considered complete by the user, and data
representing the completed image may be exported, saved in
local memory, written to persistent storage, displayed,
printed, and/or published on a website, in various embodi-
ments.

Note that once a composite image is exported from the
image compositing application, the exported composite
image may be implemented as data representing the compos-
ite image as a whole (i.e. using flattened image data, rather
than treating the inserted objects as separately editable ele-
ments of the composite image). Therefore, subsequent opera-
tions on the composite image (e.g., color or color balance
changes or resizing operations) may affect both the original
image elements and the inserted image elements, in a single
operation.

As described herein, an image compositing application
may in some embodiments provide a framework for the inte-
gration of interactive image searching capability using visual
searches, non-destructive image compositing, and a high-
performance rendering model employing a fast gradient
solver. Such an application may streamline the image discov-
ery, image acquisition, and compositing operations into an
efficient workflow for users. One such image compositing
application is illustrated in FIG. 7, according to one embodi-
ment. In this example, an image compositing application 700
includes a graphical user interface (GUI) 705, such as the user
interface described herein and illustrated in FIGS. 3A-3E and
6A-61.

Graphical user interface 705 may provide a user with
access to various editing tools and search capabilities usable
to operate on a composite image, as described herein. For
example, in the embodiment illustrated in FIG. 7, GUI 705
may provide the user access to image search module 710,
object extraction module 730, a shadow generation module
740, and other editing tools 750. These modules and tools
may be usable to find and acquire images, merge them with
other images (i.e. extracting objects from the background of
the images and blending them with the background of another
image), and modify various parameters of the merged images
and objects thereof to create a composite image, as described
herein.

In this example, image compositing application 700 also
includes one or more data structures for storing or referencing
a collection of active images (shown as 720), e.g., structures
storing data representing active images in memory local to



US 9,058,699 B2

17

image compositing application 700 during composition of an
image, and a data structure 760 storing data representing the
composite image itself (e.g., storing data representing the
composite image in memory local to image compositing
application 700 while in the process of constructed and/or
modifying the composite image).

In the example illustrated in FIG. 7, image search module
710 may perform image searches dependent on user-specified
keywords and/or visual criteria (e.g., based on a reference
image), as described herein. In this example, image search
module 710 may have access to local persistent storage 740
and/or external database storage 750 from which various
images 745 and 755 may be returned in response to a user-
initiated search for images. In response to user-selection of
images from among the search results, image search module
710 may acquire the selected images and may ad them to
active images 720 for use in a current or subsequent compos-
iting exercise.

In various embodiments, once a compositing exercise has
been completed, or at any intermediate point in the exercise,
data representing the composite image may be output, as in
770. For example, in response to user input, data representing
the composite image may be exported from image compos-
iting application 700 for publishing on a website, for display,
or for printing, and/or may be written to a computer readable
storage medium, such as storage medium 780 in FIG. 7, for
archival purposes and/or to be accessible to image composit-
ing application 700 or another application subsequent to the
compositing exercise.

The methods described herein for advanced compositing
and editing of images (e.g., within an integrated image com-
positing application) may be implemented by a computer
system configured to provide the functionality described.
FIG. 8 is a block diagram illustrating one embodiment of a
computer system 800 configured to implement such image
compositing operations. An image compositing application
such as image compositing application 820 may be config-
ured to perform various image editing functions and to render
new images accordingly. In some embodiments, a user may
invoke operations to search for and/or acquire images, merge
objects or entire images with other images, or otherwise alter
an input image (or portion thereof) through a user interface of
image compositing application 820. Image compositing
application 820 may be configured to perform these opera-
tions using a visual search module, a fast gradient solver, a
shadow generation module, and other editing tools, according
to various embodiments, and may employ the methods
described herein for compositing images within the inte-
grated framework provided by image compositing applica-
tion 820. Image compositing application 820 may be config-
ured to render the reconstructed image to a separate window,
or directly into the same frame buffer containing the input
image, in different embodiments.

Image compositing application 820 may represent various
types of graphics applications, such as painting, publishing,
photography, games, animation, and other applications that
may include program instructions executable to provide the
functionality described herein. Additionally, image compos-
iting application 820 may utilize a graphics processor 840
when rendering or displaying images according to various
embodiments. A graphics processing unit or GPU may be
considered a dedicated graphics-rendering device for a per-
sonal computer, workstation, game console or other computer
system. Modern GPUs may be very efficient at manipulating
and displaying computer graphics and their highly parallel
structure may make them more effective than typical CPUs
for a range of complex graphical algorithms. For example,

10

15

20

25

30

35

40

45

50

55

60

65

18

graphics processor 840 may implement a number of graphics
primitive operations in a way that makes executing them
much faster than drawing directly to the screen with a host
central processing unit (CPU), such as CPU 830. In various
embodiments, the methods disclosed herein for image com-
positing may be implemented by program instructions con-
figured for parallel execution on two or more such GPUs. The
GPU 800 may implement one or more application program-
mer interfaces (APIs) that permit programmers to invoke the
functionality of the GPU. Suitable GPUs may be commer-
cially available from vendors such as NVIDIA Corporation,
ATT Technologies, and others.

Note that functionality and/or features described herein as
being part of, or performed by, image compositing applica-
tion 820 may, in some embodiments, be part of, or performed
by, one or more graphics processors, such as graphics proces-
sor 840. As described above, in some embodiments image
compositing application 820 may be configured to render
merged and/or modified images into a different window than
input images.

Advanced compositing and editing of images, as described
herein, may be implemented on various types of computer
systems. Referring again to FIG. 8, computer system 800 may
be any of various types of devices, including, but not limited
to, a personal computer system, desktop computer, laptop or
notebook computer, mainframe computer system, handheld
computer, workstation, network computer, a consumer
device, video game console, handheld video game device,
application server, storage device, a peripheral device such as
a switch, modem, router, or in general any type of computing
device.

Image compositing application 820, which may be config-
ured to implement image search operations, image acquisi-
tion, image composition, and various image editing opera-
tions, as described herein, may be provided as a computer
program product, or software, that may include a computer-
readable storage medium having stored thereon instructions,
which may be used to program a computer system (or other
electronic devices) to implement image compositing using
the techniques described herein. A computer-readable stor-
age medium may include any mechanism for storing infor-
mation in a form (e.g., software, processing application) read-
able by a machine (e.g., a computer). The machine-readable
storage medium may include, but is not limited to, magnetic
storage medium (e.g., floppy diskette); optical storage
medium (e.g., CD-ROM); magneto optical storage medium;
read only memory (ROM); random access memory (RAM);
erasable programmable memory (e.g., EPROM and
EEPROM); flash memory; electrical, or other types of
medium suitable for storing program instructions. In addi-
tion, program instructions may be communicated using opti-
cal, acoustical or other form of propagated signal (e.g., carrier
waves, infrared signals, digital signals, or other types of sig-
nals or mediums.).

As illustrated in FIG. 8, computer system 800 may include
one or more processor units (CPUs) 830. Processors 830 may
be implemented using any desired architecture or chip set,
such as the SPARC™ architecture, an x86-compatible archi-
tecture from Intel Corporation or Advanced Micro Devices,
or another architecture or chipset capable of processing data,
and may in various embodiments include multiple proces-
sors, a single threaded processor, a multi-threaded processor,
a multi-core processor, or any other type of general-purpose
or special-purpose processor. Any desired operating sys-
tem(s) may be run on computer system 800, such as various
versions of Unix, Linux, Windows™ from Microsoft Corpo-



US 9,058,699 B2

19

ration, MacOS™ from Apple Corporation, or any other oper-
ating system that enables the operation of software on a
hardware platform.

The computer system 800 may also include one or more
system memories 810 (e.g., one or more of cache, SRAM,
DRAM, RDRAM, EDO RAM, DDR RAM, SDRAM, Ram-
bus RAM, EEPROM, or other memory type), or other types
of RAM or ROM) coupled to other components of computer
system 800 via interconnect 860. Memory 810 may include
other types of memory as well, or combinations thereof. One
or more of memories 810 may include program instructions
815 executable by one or more of processors 830 to imple-
ment aspects of the image compositing techniques described
herein. Program instructions 815, which may include pro-
gram instructions configured to implement image composit-
ing application 820, may be partly or fully resident within the
memory 810 of computer system 800 at any point in time.
Alternatively, program instructions 815 may be provided to
GPU 840 for performing image editing operations (or por-
tions thereof) on GPU 840 using one or more of the tech-
niques described herein. In some embodiments, the tech-
niques described herein may be implemented by a
combination of program instructions 815 executed on one or
more processors 830 and one or more GPUs 840, respec-
tively. Program instructions 815 may also be stored on an
external storage device (not shown) accessible by the proces-
sor(s) 830 and/or GPU 840, in some embodiments. Any of a
variety of such storage devices may be used to store the
program instructions 815 in different embodiments, includ-
ing any desired type of persistent and/or volatile storage
devices, such as individual disks, disk arrays, optical devices
(e.g., CD-ROMs, CD-RW drives, DVD-ROMs, DVD-RW
drives), flash memory devices, various types of RAM, holo-
graphic storage, etc. The storage devices may be coupled to
the processor(s) 830 and/or GPU 840 through one or more
storage or /O interfaces including, but not limited to, inter-
connect 860 or network interface 850, as described herein. In
some embodiments, the program instructions 815 may be
provided to the computer system 800 via any suitable com-
puter-readable storage medium including memory 810 and/or
external storage devices described above. Memory 810 may
also be configured to implement one or more data structures
825, such as one or more data structures configured to store
data representing one or more input images, composite
images, intermediate images, and/or refined composite
images, as described herein. Data structures 825 may be
accessible by processor(s) 830 and/or GPU 840 when execut-
ing image compositing application 820 or other program
instructions 815.

As shown in FIG. 8, processor(s) 830 may be coupled to
one or more of the other illustrated components by at least one
communications bus, such as interconnect 860 (e.g., a system
bus, LDT, PCI, ISA, or other communication bus type), and a
network interface 850 (e.g., an ATM interface, an Ethernet
interface, a Frame Relay interface, or other interface). The
CPU 830, the network interface 850, and the memory 810
may be coupled to the interconnect 860. It should also be
noted that one or more components of system 800 may be
located remotely and accessed via a network.

As noted above, in some embodiments, memory 810 may
include program instructions 815, comprising program
instructions configured to implement image compositing
application 820, as described herein. Image compositing
application 820 may be implemented in various embodiments
using any desired programming language, scripting lan-
guage, or combination of programming languages and/or
scripting languages, e.g., C, C++, C#, Java™, Perl, etc. For

10

15

20

25

30

35

40

45

50

55

60

65

20

example, in one embodiment, image compositing application
820 may be JAVA based, while in another embodiments, it
may be implemented using the C or C++ programming lan-
guages. In other embodiments, image compositing applica-
tion 820 may be implemented using specific graphic lan-
guages specifically for developing programs executed by
specialize graphics hardware, such as GPU 840. In addition,
image compositing application 820 may be embodied on
memory specifically allocated for use by graphics pro-
cessor(s) 840, such as memory on a graphics board including
graphics processor(s) 840. Thus, memory 810 may represent
dedicated graphics memory as well as general-purpose sys-
tem RAM, in various embodiments. Memory 810 may in
some embodiments also include a data store configured to
store image data for one or more input images and/or output
images, in various embodiments. Other information not
described herein may be included in memory 810 and may be
used to implement the methods described herein and/or other
functionality of computer system 800.

Network interface 850 may be configured to enable com-
puter system 800 to communicate with other computers, sys-
tems or machines, such as across a network. For example, an
image search module of image compositing application 820
may perform images searches by accessing one or more exter-
nal image databases via network interface 850. Network
interface 850 may use standard communications technologies
and/or protocols, and may utilize links using technologies
such as Ethernet, 802.11, integrated services digital network
(ISDN), digital subscriber line (DSL), and asynchronous
transfer mode (ATM) as well as other communications tech-
nologies. Similarly, the networking protocols used on a net-
work to which computer system 800 is interconnected may
include multi-protocol label switching (MPLS), the transmis-
sion control protocol/Internet protocol (TCP/IP), the User
Datagram Protocol (UDP), the hypertext transport protocol
(HTTP), the simple mail transfer protocol (SMTP), and the
file transfer protocol (FTP), among other network protocols.
The data exchanged over such a network by network interface
850 may be represented using technologies, languages, and/
or formats, such as the hypertext markup language (HTML),
the extensible markup language (XML), and the simple
object access protocol (SOAP) among other data representa-
tion technologies. Additionally, all or some of the links or data
may be encrypted using any suitable encryption technologies,
such as the secure sockets layer (SSL), Secure HTTP and/or
virtual private networks (VPNs), the international data
encryption standard (DES or IDEA), triple DES, Blowfish,
RC2, RC4, RCS5, RC6, as well as other data encryption stan-
dards and protocols. In other embodiments, custom and/or
dedicated data communications, representation, and encryp-
tion technologies and/or protocols may be used instead of, or
in addition to, the particular ones described above.

GPUs, such as GPU 840 may be implemented in a number
of different physical forms. For example, GPU 840 may take
the form of a dedicated graphics card, an integrated graphics
solution and/or a hybrid solution. GPU 840 may interface
with the motherboard by means of an expansion slot such as
PCI Express Graphics or Accelerated Graphics Port (AGP)
and thus may be replaced or upgraded with relative ease,
assuming the motherboard is capable of supporting the
upgrade. However, a dedicated GPU is not necessarily
removable, nor does it necessarily interface the motherboard
in a standard fashion. The term “dedicated” refers to the fact
that hardware graphics solution may have RAM that is dedi-
cated for graphics use, not to whether the graphics solution is
removable or replaceable. Dedicated GPUs for portable com-
puters may be interfaced through a non-standard and often



US 9,058,699 B2

21

proprietary slot due to size and weight constraints. Such ports
may still be considered AGP or PCI express, even if they are
not physically interchangeable with their counterparts. As
illustrated in FIG. 8, memory 810 may represent any of vari-
ous types and arrangements of memory, including general-
purpose system RAM and/or dedication graphics or video
memory.

Integrated graphics solutions, or shared graphics solutions
are graphics processors that utilize a portion of a computer’s
system RAM rather than dedicated graphics memory. For
instance, modern desktop motherboards normally include an
integrated graphics solution and have expansion slots avail-
able to add a dedicated graphics card later. As a GPU may be
extremely memory intensive, an integrated solution finds
itself competing for the already slow system RAM with the
CPU as the integrated solution has no dedicated video
memory. For instance, system RAM may experience a band-
width between 2 GB/s and 8 GB/s, while most dedicated
GPUs enjoy from 15 GB/s to 30 GB/s of bandwidth. Hybrid
solutions may also share memory with the system memory,
but may have a smaller amount of memory on-board than
discrete or dedicated graphics cards to make up for the high
latency of system RAM. Data communicated between the
graphics processing unit 840 and the rest of the computer
system 800 may travel through a graphics card slot or other
interface, such as interconnect 860 of FIG. 8.

Computer system 800 may also include one or more addi-
tional I/O interfaces, such as interfaces for one or more user
input devices 870, or such devices may be coupled to com-
puter system 800 via network interface 850. For example,
computer system 800 may include interfaces to a keyboard, a
mouse or other cursor control device, a joystick, or other user
input devices 870, in various embodiments. Additionally, the
computer system 800 may include one or more displays (not
shown), coupled to processors 830 and/or other components
via interconnect 860 or network interface 850. Such input/
output devices may be configured to allow a user to interact
with image compositing application 820 to request or invoke
various image editing operations and/or to specify various
search parameters, image editing parameters, and/or other
configurable options available to the user when compositing
images while executing image compositing application 820.
For example, they may be configured to allow a user to select
an object of interest contained within an image for merging
with one or more other images, to identify an image from
among a collection of image search results, etc. It will be
apparent to those having ordinary skill in the art that computer
system 800 may also include numerous other elements not
shown in FIG. 8.

Note that program instructions 815 may be configured to
implement an image compositing application 820 as a stand-
alone application, or as a module of another graphics appli-
cation or graphics library, in various embodiments. For
example, in one embodiment program instructions 815 may
be configured to implement graphics applications such as
painting, publishing, photography, games, animation, and/or
other applications, and may be configured to composite
images as part of one or more of these graphics applications.
In another embodiment, program instructions 815 may be
configured to implement the image compositing techniques
described herein in one or more functions called by another
graphics application executed on GPU 840 and/or pro-
cessor(s) 830. Program instructions 815 may also be config-
ured to render images and present them on one or more
displays as the output of an image compositing operation
and/or to store image data for composite images, modified
images (or objects thereof), and/or refined composite images

10

15

20

25

30

35

40

45

50

55

60

65

22

in memory 810 and/or an external storage device(s), in vari-
ous embodiments. For example, an image compositing appli-
cation 820 included in program instructions 815 may utilize
GPU 840 when merging, modifying, rendering, or displaying
images in some embodiments.

While various image compositing techniques have been
described herein with reference to various embodiments, it
will be understood that these embodiments are illustrative and
are not meant to be limiting. Many variations, modifications,
additions, and improvements are possible. More generally,
various techniques are described in the context of particular
embodiments. For example, the blocks and logic units iden-
tified in the description are for ease of understanding and are
not meant to be limiting to any particular embodiment. Func-
tionality may be separated or combined in blocks differently
in various realizations or described with different terminol-
ogy. In various embodiments, actions or functions described
herein may be performed in a different order than illustrated
or described. Any of the operations described may be per-
formed programmatically (i.e., by a computer according to a
computer program). Any of the operations described may be
performed automatically (i.e., without user intervention).

The embodiments described herein are meant to be illus-
trative and not limiting. Accordingly, plural instances may be
provided for components described herein as a single
instance. Boundaries between various components, opera-
tions and data stores are somewhat arbitrary, and particular
operations are illustrated in the context of specific illustrative
configurations. Other allocations of functionality are envi-
sioned and may fall within the scope of claims that follow.
Finally, structures and functionality presented as discrete
components in the example configurations described herein
may be implemented as a combined structure or component.
These and other variations, modifications, additions, and
improvements may fall within the scope as defined in the
claims that follow.

Although the embodiments above have been described in
detail, numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims be
interpreted to embrace all such variations and modifications.

What is claimed is:

1. A method comprising:

receiving an input to initiate a preview of a composite

image that includes an object extracted from one image
as included in another image;

displaying the composite image in a first resolution during

the preview of the composite image; and

subsequent to displaying the composite image during the

preview, rendering a refined version of the composite
image as a result of a compositing operation, the refined
version of the composite image being in a second reso-
lution that is higher than the first resolution displayed
during the preview of the composite image.

2. A method as described in claim 1, further comprising
displaying a copy of the one image.

3. A method as described in claim 2, wherein the displaying
is performed responsive to selection of the one image.

4. A method as described in claim 2, wherein the displaying
is performed such that the copy of the one image is displayed
as superimposed over the other image.

5. A method as described in claim 1, wherein the display of
the preview includes merging the object and the other image
to generate the preview of the composite image such that the
object appears to be inserted in the other image.



US 9,058,699 B2

23

6. A method as described in claim 1, wherein the object is
extracted through identification of a perimeter drawn around
the object in a graphical user interface.

7. A method as described in claim 1, wherein the object is
extracted by distinguishing pixels as belonging to a fore-
ground object or a background object.

8. A method as described in claim 7, wherein the distin-
guishing is performed based at least in part on a distance of
the pixels from pixels along a perimeter, color values of
pixels, intensity values of pixels, or gradient values of pixels.

9. A method as described in claim 1, further comprising
modifying the object responsive to a user input and wherein
the displaying of the preview includes the modified object.

10. A method as described in claim 1, wherein the com-
posite image is editable during the preview.

11. A method comprising:

displaying a preview of a composite image in a first reso-

Iution, the composite image including an object
extracted from one image as included in another image;
and

rendering, after displaying the preview, a refined version of

the composite image including the object extracted from
the one image as included in the another image in a
second resolution that is higher than the first resolution.

12. A method as described in claim 11, further comprising
displaying a copy of the one image responsive to selection of
the one image.

13. A method as described in claim 12, wherein the dis-
playing of the copy is performed such that the copy of the one
image is displayed as superimposed over the other image.

14. A method as described in claim 11, wherein the display
of the preview includes merging the object and the other

10

15

20

25

30

24

image to generate the preview of the composite image such
that the object appears to be inserted in the other image.

15. A method as described in claim 11, wherein the object
is extracted through identification of a perimeter drawn
around the object in a graphical user interface.

16. A method as described in claim 11, wherein the object
is extracted by distinguishing pixels as belonging to a fore-
ground object or a background object.

17. A method as described in claim 16, wherein the distin-
guishing is performed based at least in part on a distance of
the pixels from pixels along a perimeter, color values of
pixels, intensity values of pixels, or gradient values of pixels.

18. A computing system having program instructions
stored thereon that are executable by the computer system to
cause the computer system to perform operations comprising:

displaying a preview of a composite image in a first reso-

Iution, the composite image including an object
extracted from one image as included in another image;

rendering, after displaying the preview, a refined version of
the composite image in a second resolution that is higher
than the first resolution displayed during the preview;
and

displaying the refined version.

19. A computing system as described in claim 18, wherein
the object is extracted through identification of a perimeter
drawn around the object in a graphical user interface.

20. A computing system as described in claim 18, wherein
the object is extracted by distinguishing pixels as belonging to
a foreground object or a background object.

#* #* #* #* #*



